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Context Independence as a Statistical Property of
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The context dependence of Bell local hidden variable theory is reconsidered both
in its mathematical and physical justification. The compatibility of the context
dependence of individual measurement results with the context independence of
the statistics of measurement results is shown to warrant the consistency of the
Bell framework with respect to the Gleason no-hidden-vari ables theorem. Finally,
a sharp distinction between context dependence and (any form of) nonlocal
dependence is defended on the background of some recent algebraic proofs
of nonlocality.

1. BELL LOCAL CAUSAL THEORIES AND CONTEXTUALISM

In his fundamental paper, ª On the problem of hidden variables in quan-

tum mechanics,º John Bell (1966) proved the nonexistence of dispersion-

free states in quantum mechanics to follow from less questionable premises

with respect to von Neumann’ s no-hidden-variable theorem. Two proofs were
actually provided, one relying and one not relying on Gleason’ s theorem.

However, Bell also argued that Gleason’ s theorem actually rules out only

noncontextual hidden variable theoriesÐ according to which the result of a

measurement of an observable depends only on the state of the system, and

not also on the set of (compatible) observables that are measured with itÐ and

it is as irrelevant as von Neumann’ s theorem with respect to contextual
hidden variable theories (as is the case with Bohm’ s causal interpretation of

quantum mechanics).

However, in his later formulation of local causal theory, suitable for the

derivation of his celebrated inequality, Bell did not explicitly address the

problem of contextualism for his own local hidden variable formulation, and
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contextualism is not stated as an independent condition. The question is not

trivial. Had the formulation contained in Bell (1964) been noncontextual by
construction , then the statistical incompatibility between hidden-variable-
theory and quantum mechanical predictions could not even be formulated,

since in this case the premises of Bell’ s theorem would have been inconsistent

with the axioms of ordinary quantum mechanics independent of any local-
ity requirement.

In the now usual formulation of the EPR-Bohm experiment, a pair S1

1 S2 of spin-1/2 particles S1 and S2 are prepared in the singlet state and fly
off in opposite directions. Spin observables s 1 and s 2 are measured along

prefixed directions on the two particles in spacelike-separated regions. In the

Bell (1964) local causal theory, where l denotes the complete specification

of the source state and aÃand bÃare unit vectors associated to two possible

directions, ª the result A of measuring s 1 ? aÃis then determined by aÃand l ,

and the result B of measuring s 2 ? bÃin the same instance is determined by
bÃand l , and A (aÃ, l ) 5 6 1, B (bÃ, l ) 5 6 1º (Bell, 1964). The contributions

of aÃand bÃcharacterize respectively the value assignments A and B as context
dependent in general. But how is context dependence translated into a suitable

Hilbert space framework for Bell theory? (Gudder, 1970; Beltrametti and

Cassinelli, 1981).
All observables of S1 and S2 are represented by operators defined on

the tensor product space *1 ^ *2. Since for any pair of directions aÃ, bÃthe

spin operators s Ã1, aÃand s Ã2, bÃhave simple spectrum, each forms a complete

set of self-adjoint commuting operators. Then if IÃ1 and IÃ2 denote the identity

operators on *1 and *2, respectively, { s Ã1, aÃ̂ IÃ2, IÃ1 ^ s Ã2, bÃ} itself is a complete

set of compatible observables of S1 1 S2. This complete set determines a
maximal Boolean s -algebra B in the set of projectors 3(*1 ^ *2), since

the von Neumann algebra generated by { s Ã1, aÃ ^ IÃ2, IÃ1 ^ s Ã2, bÃ} is maximal

Abelian. This maximal Boolean s -algebra is generated by projectors con-

tained in the spectral decompositions of s Ã1, aÃ ^ IÃ2 and IÃ1 ^ s Ã2, bÃ.

Now it is convenient to regard { s Ã1, aÃand s Ã2, bÃ} as fixing a certain context,

and the elements of the algebra B as contextual properties of the system.
Given a f P *1 ^ *2, representing a pure state s of S1 1 S2, it is possible

to define a state (probability measure) w f on B that is dispersion-free just

on B (and not on any other maximal Boolean algebra induced by a different

context), namely it assigns to each projector of B either 0 or 1. By w f one

assigns a definite value to all observables represented by operators whose

spectral decompositions belong to B, and in particular to the observables
represented by operators of the form s Ã1, aÃ ^ IÃ2, IÃ1 ^ s Ã2, bÃ, and s Ã1, aÃ ^ s Ã2, bÃ

(the latter represents what is sometimes called a correlation observable). The

measure w f can be considered as a mathematical representative of a complete
state ^ s, l & , where s is the given pure quantum state of S1 1 S2 and l is
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supposed to represent the `hidden variable.’ The introduction of measures

w f made possible by the construction of the Boolean algebra B amounts to

the formulation of a hidden variable theory Thv for the system S1 1 S2:
hypothetical complete states are introduced, represented by dispersion-free

probability measures on B, in which all relevant observables of the composite

system S1 1 S2 turn out to have definite values. However, it is to be stressed

that such complete states are context dependent. For, given any spin

observable s Ã1, aÃ, the set

{{ s Ã1, aÃ, s Ã2, bÃ}, { s Ã1, aÃ, s Ã2, bÃ
8}, { s Ã1, aÃ, s Ã2, bÃ

9}, . . .}

represents a set {C, C 8, C9, . . .} of different contexts for possible measure-
ments of s Ã1, aÃin given states. Let us denote by [ s Ã1, aÃ] ^ s, l ,C & the definite value

of the observable s Ã1, aÃin the complete state ^ s, l & for the context C. In our

general Thv for S1 1 S2, [ s Ã1, aÃ] ^ s, l ,C & Þ [ s Ã1, aÃ] ^ s, l ,C 8 & , with s Ã2, bÃand s Ã2, bÃ8 incompati-

ble. In this case, the value of s Ã1, aÃin ^ s, l & need not match across the different

contexts C and C 8. This feature expresses the context dependence of complete
states in this framework. The premises of the Bell (1964) theorem turn out

to be consistent with Gleason’ s theorem, i.e., with the ordinary axiomatization

of quantum mechanics, since the assignment of definite values to observables

of the system in given states, represented by the probability measure w f ,

turns out to be contextual.

2. NO-GO THEOREMS AND STATISTICAL
NONCONTEXTUALISM

Two classes of no-hidden-var iables theorems are usually distinguished,
the class of Kochen and Specker (KS) theorems and the class of Bell theorems.

While KS theorems rule out noncontextual hidden variables, Bell theorems

rule out contextual local hidden variables. The previous characterization of

contextualism can be used to show how one of the most recent and simple

no-hidden-var iables theorem, due to Peres, is a KS theorem, since it rules

out just noncontextual value assignments to observables in entangled states
(Laudisa, 1997). Peres’ theorem is formulated in the usual EPR-Bohm frame-

work of a system of two spin-1/2 particles 1 1 2 for the singlet state C in

a four-dimensional Hilbert space (Peres, 1990).

Mermin has provided two generalizations of Peres’ theorem. Although

the first (let us call it M1), involving a greater number of observables, refers

to the same four-dimensional Hilbert space as Peres’ proof, while the second
(let us call it M2) holds for observables on a eight-dimensional Hilbert space

(Mermin, 1993), neither M1 nor M2 relies on the particular properties of a

specific state such as the singlet state. Both M1 and M2 fall within the

category of KS theorems, and M1 admittedly shares with Peres’ theorem the
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noncontextualism assumption. However, Mermin invokes a philosophical

argument of a nonconspiratorial sort in order to argue that M2 avoids the

objection to the noncontextualism assumption contained in Peres’ theorem
and in M1 (Mermin, 1993, p. 810). Quantum mechanical predictions are

context independent. An observable A can be measured either with mutually

commuting observables B, C, . . . or with mutually commuting observables

L, M, . . ., while some of the L, M, . . . do not commute with all B, C,

. . . . Nevertheless, joint distributions for the results of an {A, B, C, . . .}

measurement and the results of an {A, L, M, . . .} measurement yield the
same marginal distribution for the result of the measurement of A. Now,

since any viable hidden variable theory is supposed to agree on quantum

mechanical predictions, Mermin contends that a contextual hidden variables

theory would be unable to account for the reason nature should conspire

to render context dependence ineffective at the level of distributions over

supposedly contextual complete states (Mermin, 1993, pp. 811±12).
However, if one looks at the way in which Bell contextual local hidden

variable theory represents quantum mechanical observables, there is no need

to resort to conspiracy in nature. In Bell theory, spin observables are repre-

sented as one-point real-valued functions over the set of complete states.

Now, if {C1, C2, C3, . . .} is a set of different contexts for any EPR-Bohm
observable s 1, aÃ, we have seen that in general, for i Þ j, we have

[ s 1, aÃ] ^ C , l , Ci & Þ [ s 1, aÃ] ^ C , l ,Cj & . As we said, the value of s 1, aÃneed not match

across different contexts. However, the Bell local causal theory represents

s 1, aÃas a one-point real-valued function A1, aÃ( j ) on a space J of complete

states j regardless of the contribution of other observables s 2,? to the definition
of the different contexts. Thus, assuming a context-independent distribution
of complete states at the source is reasonable, since the theory prescribes

no emergence of context sensitivity at the statistical level [for a similar

compatibility in Bohm’ s causal interpretation of quantum mechanics, see

Home (1994)].

3. CONTEXT DEPENDENCE AND NONLOCAL DEPENDENCE

Pagonis et al. (1991) have shown that a contextual hidden variable theory

avoids the conclusions of M2. Furthermore, the mathematical expression of

contextualism given above makes it clear how to distinguish contextualism

from nonlocality. Assuming a rather general principle of locality (sometimes

referred to as Einstein locality), no influenceÐ appealing to which we can
affect a possessed value of an observable for one system by operating on

another systemÐ can occur when the regions of the two systems are spacelike-

separated. With particular reference to the notion of contextualism, two

notions of locality have been further singled out: ontological locality and



Context Independence of Hidden Variable Theories 447

environmental locality (Redhead, 1987). In an EPR framework, a possessed

value of an observable for one subsystem cannot depend on the features of

its ontological or environmental context, specified jointly with the second
subsystem: for a (nonmaximal) observable A, an ontological context is speci-

fied by the (maximal) observable B of which A is a function, whereas B
specifies an environmental context whenever the measuring apparatus itself

is set to measure just B. Nonlocality then entails in one way or another a

dependence of observables’ possessed values for one system on particular

choices of observables to measure on another system that is spacelike-sepa-
rated from the first. However, our characterization of contextualism need not

imply that particular values of s 1, aÃ in complete states (s, l ) depend on

whether the paired observable is s 2, bÃor s 2, bÃ8, even if the regions in which

spin measurements are performed are spacelike-separated.

The fact that values of observables in complete states need not match

in different contexts is too weak to imply nonlocality by itself. The coincidence
of such valuesÐ notwithstanding the different contextsÐ is a possibility that

is not excluded a priori, although it is not assumed in general, whereas

nonlocality seems to entail an effective dependence of the possession of

values by physical systems on operations performed is spacelike-separated

regions. Contextualism actually turns out to be a prerequisite to test consis-
tently local realism against quantum mechanics, ifÐ given Gleason’ s theo-

remÐ we do not introduce more exotic assumptions [as in the completely

nonstandard approach of Pitowsky (1989) to the contextualism issue].

Still, Mermin (1993) argues that his M2 can be converted into a nonlocal-

ity theorem (let us call it M3) simply by justifying noncontextualism on the

basis of locality. In this case, observables like s 1,xÃ, s 2,yÃ, s 3,zÃ, are defined as
the spin component observables of three different spin-1/2 particles in the

singlet state, spacelike-separated from one another. As above, quantum

mechanics allows us to measure an observable A either with B, C, . . . or

with L, M, . . ., fail to commute with all B,C,. . . . The assumption by which

we take the measurement result of A to be independent of which of the

{A, B ,C, . . .} measurement or {A, L, M, . . .} measurement A is extracted
from (i.e., noncontextualism) can beÐ according to MerminÐ motivated by

a general principle of locality if we assume that the replacement of the

experimental arrangement suitable to the measurement of B, C, . . . with the

experimental arrangement suitable to the measurement of L, M, . . . is per-

formed at a distance from the experimental arrangement suitable to the

measurement of A (Mermin, 1993, p. 812). The `conversion’ of M2 into a
nonlocality theorem is thought to relate simply and effectively the class of

KS theorems and the class of Bell theorems for special composite systems:

in this case hidden variables would be constrained by KS `nonlocal contextu-

alism’ to the same extent as by Bell nonlocality. However, the status of M3
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as a `nonlocality version’ of M2 cannot be defended by this justification,

which seems at variance with the constraints imposed by a Hilbert space

description of quantum systems. For if we want to remain consistent with
such a description, any nonlocality theorem must presuppose a contextual

value assignment. Any form of `local noncontextualism’ in this framework

faces inconsistency, since any noncontextual value assignment to observables

in an at least three-dimensional Hilbert space is ruled out by Gleason’ s

theorem. The more general and well-founded justification of M3 as a nonlocal-

ity theorem that complies with the Hilbert space constraints is provided by
Stocks and Redhead (1996).
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